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described in other papers and will give the reader details of the implementation 
on the Cyber 205, though that machine is no longer being produced. 
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12[68TO5, 65K10, 92-041.-EMILE AARTI & JAN KORST, Simulated Annealing 
and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimiza- 
tion and Neural Computing, Wiley Interscience, New York, 1989, xii+272 
pp., 24 cm. Price $49.95. 

This book is an excellent introduction for mathematicians and physicists to 
the subjects of simulated annealing and Boltzmann machines. Furthermore, the 
discussion of Boltzmann machines provides a rigorous foundation with which 
to penetrate the very trendy subjects of "neural computing" and "neural net- 
works". The book is divided into two sections, the first concentrating on the 
simulated annealing algorithm, and the second on aspects of Boltzmann ma- 
chines, especially those pertaining to parallel and neural computation. 

The authors motivate the simulated annealing algorithm as a method for 
solving problems of combinatorial optimization. These problems are generally 
considered to be very hard to solve, and in particular, all of the examples of 
combinatorial optimization problems in the book are from the class of NP- 
complete problems. The simulated annealing algorithm is then presented using 
the conceptual analogy of the algorithm to metallurgical annealing. The presen- 
tation is very general and only requires a minimization problem with a well- 
defined objective function, C, over a finite and discrete solution space that 
has a neighborhood structure. Within this mathematical framework the sim- 
ulated annealing algorithm consists of proposing a neighboring configuration. 
The proposal is accepted if it either decreases the objective function, or, when 
the proposed configuration increases the objective function, a uniformly dis- 
tributed random number chosen in [O1, 1] is greater than the value of eAC/C. 

This is essentially the well-known Metropolis algorithm, where the constant c 
in the Boltzmann factor is the simulated annealing analog of temperature. This 
procedure, augmented with a sequence of c values going to zero, making certain 
that the algorithm reaches the equivalent of thermal equilibrium at every value 
of c, constitutes the simulated annealing algorithm. The decreasing sequence 
of c values is called a cooling schedule. 

The discussion of the simulated annealing algorithm then continues with 
practical considerations, implementations of the algorithm for the NP-complete 
examples, analytic results, and numerical examples. There seems to be an ex- 
tensive body of results concerning the global asymptotic convergence properties 
of ihe algorithm, and two very important results are presented in great detail. 
The first is an asymptotic result with the assumption of thermal equilibrium 
at each value of c. The second, more impressive result, shows that the global 
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asymptotic convergence of the algorithm with a given cooling schedule is pos- 
sible with only a finite number of iterations at each value of c. This result 
is based on the analysis of the simulated annealing algorithm as a finite-state 
Markov chain, and requires only elementary results from the theory of finite- 
state Markov processes. 

The extensive discussion of the simulated annealing algorithm serves as strong 
motivation for the second section, a discussion of Boltzmann machines. A 
Boltzmann machine is an interconnected network of elements whose state is ei- 
ther 0 or 1. These binary units are bidirectionally connected with strengths that 
can take arbitrary positive or negative values. Implicit in a set of connection 
strengths is the consensus function of the Boltzmann machine which is the sum 
of the product of the connection strengths and the states of the interconnected 
units. The computational task of the Boltzmann machine is to maximize its 
consensus function. This is accomplished with an algorithm analogous to sim- 
ulated annealing. A unit is chosen for a proposed change in state. This change 
is accepted if either the consensus function increases or if 1/(1 + e`AClc) is 
smaller than a chosen uniformly distributed random number in the interval 
[0, 1]. Decreasing values of c are then used to "cool" the Boltzmann machine 
into a near optimal configuration. 

This definition of Boltzmann machines shows the clear analogy with the sim- 
ulated annealing algorithm, and so the homologous asymptotic convergence re- 
sults for Boltzmann machines that are presented next are predictable. One 
can augment the definition of the Boltzmann machine to allow the choice of 
proposed units for transition to be done in a concurrent manner for imple- 
mentation on a parallel device. However, asymptotic convergence for these 
parallel Boltzmann machines is still an open problem. Implementational and 
numerical aspects of Boltzmann machines for the solution of the examples from 
combinatorial optimization are then presented, concluding the discussion of op- 
timization. 

The parallel implementation of the Boltzmann machines leads very naturally 
into the subject of neural computing. First, the problem of classification for 
Boltzmann machines is addressed. Here a simple example of the classification 
of digits in a digital display is carefully presented. Its implementation is with a 
Boltzmann machine with two layers of units, an input and an output layer. The 
famous problem of classification for the exclusive-or function is then shown to 
confound a simple two-layered Boltzmann machine, motivating the considera- 
tion of hidden units. With hidden units come the ambiguities in the assignment 
of connection strengths in Boltzmann machines. This leads to the considera- 
tion of learning algorithms for iteratively determining connection strengths that 
will result in a consensus function with local maxima which correspond to the 
desired classification groupings. 

A very elegant theorem for learning in a Boltzmann machine is then de- 
scribed. Given a current equilibrium distribution of local maxima, q', and 
a desired equilibrium, q, the divergence function D(qlq') is defined. Min- 
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imization of this function in the space of connection strength is shown to be 
equivalent to determining the optimal set of connection strengths for the desired 
equilibrium distribution. In the special case where the Boltzmann machine has 
no hidden units, it is proven that D(qlq') is a strictly convex function with a 
single local minimum. This implies that a steepest descent approach to the min- 
imization of the divergence function is guaranteed to converge. If a Boltzmann 
machine does have hidden units, D(qIq') is no longer guaranteed to be convex, 
and heuristic approaches to its minimization are presented. 

All in all, the presentation of the material in this book is very balanced. 
Rigorous results are presented, and an indication of what the authors believe 
to be the important open problems in the field are included. The Boltzmann 
machine serves as a fairly rigorous intellectual springboard into the much less 
rigorous field of neural networks and neural computing. For myself, I found 
this book an intellectually comforting introduction to this seemingly chaotic 
new discipline, which clearly marks out the firm ground and the quicksand. 
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13[65-01, 65Fxx, 65KxxJ.-PHILIPPE G. CIARLET, Introduction to Numerical 
Linear Algebra and Optimisation, Cambridge University Press, Cambridge, 
1989, xiv+436 pp., 22 2 cm. Price $29.95. 

This is what appears to be a straight translation of the French original, enti- 
tled "Introduction a l'analyse numerique matricielle et a l'optimisation", except 
that the exercises, which originally were published separately, are now incorpo- 
rated in the same volume at the end of each subsection. For a review of the 
original text, see [1]. 
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14[65-00, 65-01, 65-04, 41-00, 41-01, 33-00|.-B. A. PoPov & G. S. TESLER, 
Computation of Functions on Electronic Computers-Handbook (in Russian), 
Naukova Dumka, Kiev, 1984, 599 pp., 21 cm. Price 1 Ruble, 90 Kopecks. 

For the user of modern computers or calculators of all sizes, the computation 
of values of elementary functions-and even of some special functions-has 
become a simple and common task. This fact, however, should not make us 
forget that a good deal of mathematics has had to be developed over the last 
few decades in order to establish the methods which ensure that these computa- 
tions can be performed in a fast and accurate manner. Several handbooks have 


